數控技術就業前景及就業方向分析
就業前景
隨著我國機制行業新技術的應用,我國世界制造業加工中心地位形成,數控機床的使用、維修、維護人員在全國各工業城市都非常緊缺,再加上數控加工人員從業面非常廣,可在現代制造業的模具、鐘表業、五金行業、中小制造業、從事相應公司企業的電腦繪圖、數控編程設計、加工中心操作、模具設計與制造、電火花及線切割工作,所以目前現有的數控技術人才無法滿足制造業的需求,而且人才市場上的這類人才儲備并不大,企業要在人才市場上尋覓合適的人才顯得比較困難,以至于導致模具設計、CAD/CAM工程師、數控編程、數控加工等已成為我國各人才市場招聘頻率最高的職位之一。
我國高級技工正面臨著青黃不接的嚴重局面,原有技工年齡已大,中年技工為數不多,青年技工尚未成熟。在制造業,能夠熟練操作現代化機床的人才已成稀缺,據統計,目前,我國技術工人中,高級技工占3.5%,中級工占35%,初級工占60%.而發達國家技術工人中,高級工占35%、中級工占50%、初級工占15%.隨著產業布局、產品結構的調整,就業結構也將發生變化。企業對較高層次的第一線應用型人才的需求將明顯增加。
而借助國外的發展經驗來看,當進入產業布局、產品結構調整時期,與產業結構高度化匹配、培養相當數量的具有高等文化水平的職業人才,成為迫切要求。而對于數控加工專業,不僅要求從業人員有過硬的實踐能力,更要掌握系統而扎實的機加理論知識。因此,既有學歷又有很強操作能力的數控加工人才更是成為社會較緊缺、企業最急需的人才。
就業方向
1 藍領層
即數控操作技工,精通機械加工和數控加工工藝知識,熟練掌握數控機床的操作和手工編程,了解自動編程和數控機床的簡單維護維修,此類人員市場需求量大,適合作為車間的數控機床操作工人,但由于其知識較單一,其工資待遇不會大高。
2 灰領層
其一,數控編程員:掌握數控加工工藝知識和數控機床的操作,熟悉復雜模具的設計和制造專業知識,熟練掌握三維CAD/CAM軟件,如UG、PRO/E等;熟練掌握數控自動編程、手工編程技術。此類人員需求量大,尤其在模具行業非常受歡迎,待遇也很高。其二,數控機床維護、維修人員:掌握數控機床的機械結構和機電聯調,掌握數控機床的操作與編程,熟悉各種數控系統的特點、軟硬件結構、PLC和參數設置。精通數控機床的機械和電氣的調試和維修。此類人員需求量相對少一些,但培養此類人員非常不易,需要大量實際經驗的積累,目前非常缺乏,其待遇也較高。
3 金領層
屬于數控通才,具備并精通數控操作技工、數控編程員和數控維護、維修人員所需掌握的綜合知識,并在實際工作中積累了大量實際經驗,知識面很廣。精通數控機床的機械結構設計和數控系統的電氣設計,掌握數控機床的機電聯調。能自行完成數控系統的選型、數控機床電氣系統的設計、安裝、調試和維修。能獨立完成機床的數控化改造。是企業(特別是民營企業)的搶手人才,其待遇非常之高。
數控技術專業發展前景
數控技術和數控裝備是制造工業現代化的重要基礎。這個基礎是否牢固直接影響到一個國家的經濟發展和綜合國力,關系到一個國家的戰略地位。因此,世界上各工業發達國家均采取重大措施來發展自己的數控技術及其產業。
在我國,數控技術與裝備的發展亦得到了高度重視,取得了相當大的進步。特別是在通用微機數控領域,以PC平臺為基礎的國產數控系統,已經走在了世界前列。但是,我國在數控技術研究和產業發展方面亦存在不少問題,特別是在技術創新能力、商品化進程、市場占有率等方面情況尤為突出。在新世紀到來時,如何有效解決這些問題,使我國數控領域沿著可持續發展的道路,從整體上全面邁入世界先進行列,使我們在國際競爭中有舉足輕重的地位,將是數控研究開發部門和生產廠家所面臨的重要任務。 為完成此任務,首先必須確立符合中國國情的發展道路。為此,本文從總體戰略和技術路線兩個層次及數控系統、功能部件、數控整機等幾個具體方面探討了新世紀的發展途徑。
數控技術的應用不但給傳統制造業帶來了革命性的變化,使制造業成為工業化的象征,而且隨著數控技術的不斷發展和應用領域的擴大,他對國計民生的一些重要行業(IT、汽車、輕工、醫療等)的發展起著越來越重要的作用,因為這些行業所需裝備的數字化已是現代發展的大趨勢,世界上數控技術及其裝備發展的趨勢來看,其主要研究熱點有以下幾個方面:
高速、高精加工技術及裝備的新趨勢
效率、質量是先進制造技術的主體。高速、高精加工技術可極大地提高效率,提高產品的質量和檔次,縮短生產周期和提高市場競爭能力。為此日本先端技術研究會將其列為5大現代制造技術之一,國際生產工程學會(CIRP)將其確定為21世紀的中心研究方向之一。 在轎車工業領域,年產30萬輛的生產節拍是40秒/輛,而且多品種加工是轎車裝備必須解決的重點問題之一;在航空和宇航工業領域,其加工的零部件多為薄壁和薄筋,剛度很差,材料為鋁或鋁合金,只有在高切削速度和切削力很小的情況下,才能對這些筋、壁進行加工。采用大型整體鋁合金坯料“掏空”的方法來制造機翼、機身等大型零件來替代多個零件通過眾多的鉚釘、螺釘和其他聯結方式拼裝,使構件的強度、剛度和可靠性得到提高。這些都對加工裝備提出了高速、高精和高柔性的要求。 從EMO2001展會情況來看,高速加工中心進給速度可達80m/min,甚至更高,空運行速度可達100m/min左右。世界上許多汽車廠,包括我國的上海通用汽車公司,已經采用以高速加工中心組成的生產線部分替代組合機床。美國CINCINNATI公司的HyperMach機床進給速度最大達60m/min,快速為100m/min,加速度達2g,主軸轉速已達60000r/min。加工一薄壁飛機零件,只用30min,而同樣的零件在一般高速銑床加工需3h,在普通銑床加工需8h;德國DMG公司的雙主軸車床的主軸速度及加速度分別達121000r/mm和1g。 在加工精度方面,普通級數控機床的加工精度已由10μm提高到5μm,精密級加工中心則從3~5μm,提高到1~1.5μm,并且超精密加工精度已開始進入納米級(0.01μm)。 在可靠性方面,國外數控裝置的MTBF值已達6 000h以上,伺服系統的MTBF值達到30000h以上,表現出非常高的可靠性。為了實現高速、高精加工,與之配套的功能部件如電主軸、直線電機得到了快速的發展,應用領域進一步擴大。
五軸聯動加工和復合加工機床快速發展
采用5軸聯動對三維曲面零件的加工,可用刀具最佳幾何形狀進行切削,不僅光潔度高,而且效率也大幅度提高。一般認為,1臺5軸聯動機床的效率可以等于2臺3軸聯動機床,特別是使用立方氮化硼等超硬材料銑刀進行高速銑削淬硬鋼零件時,5軸聯動加工可比3軸聯動加工發揮更高的效益。但過去因5軸聯動數控系統、主機結構復雜等原因,其價格要比3軸聯動數控機床高出數倍,加之編程技術難度較大,制約了5軸聯動機床的發展。
當前由于電主軸的出現,使得實現5軸聯動加工的復合主軸頭結構大為簡化,其制造難度和成本大幅度降低,數控系統的價格差距縮小。因此促進了復合主軸頭類型5軸聯動機床和復合加工機床(含5面加工機床)的發展。在EMO2001展會上,新日本工機的5面加工機床采用復合主軸頭,可實現4個垂直平面的加工和任意角度的加工,使得5面加工和5軸加工可在同一臺機床上實現,還可實現傾斜面和倒錐孔的加工。德國DMG公司展出DMUVoution系列加工中心,可在一次裝夾下5面加工和5軸聯動加工,可由CNC系統控制或CAD/CAM直接或間接控制。
數控系統發展主要趨勢
21世紀的數控裝備將是具有一定智能化的系統,智能化的內容包括在數控系統中的各個方面:為追求加工效率和加工質量方面的智能化,如加工過程的自適應控制,工藝參數自動生成;為提高驅動性能及使用連接方便的智能化,如前饋控制、電機參數的自適應運算、自動識別負載自動選定模型、自整定等;簡化編程、簡化操作方面的智能化,如智能化的自動編程、智能化的人機界面等;還有智能診斷、智能監控方面的內容、方便系統的診斷及維修等。為解決傳統的數控系統封閉性和數控應用軟件的產業化生產存在的問題。許多國家對開放式數控系統進行研究,如美國的NGC(The Next Generation Work-Station/Machine Control)、歐共體的OSACA(Open System Architecture for Control within Automation Systems)、日本的OSEC(Open System Environment for Controller),中國的ONC(Open Numerical Control System)等。數控系統開放化已經成為數控系統的未來之路。所謂開放式數控系統就是數控系統的開發可以在統一的運行平臺上,面向機床廠家和最終用戶,通過改變、增加或剪裁結構對象(數控功能),形成系列化,并可方便地將用戶的特殊應用和技術訣竅集成到控制系統中,快速實現不同品種、不同檔次的開放式數控系統,形成具有鮮明個性的名牌產品。開放式數控系統的體系結構規范、通信規范、配置規范、運行平臺、數控系統功能庫以及數控系統功能軟件開發工具等是當前研究的核心。
網絡化數控裝備是近兩年國際著名機床博覽會的一個新亮點。數控裝備的網絡化將極大地滿足生產線、制造系統、制造企業對信息集成的需求,也是實現新的制造模式如敏捷制造、虛擬企業、全球制造的基礎單元。國內外一些著名數控機床和數控系統制造公司都在近兩年推出了相關的新概念和樣機,如在EMO2001展中,日本山崎馬扎克(Mazak)公司展出的“CyberProduction Center”(智能生產控制中心,簡稱CPC);日本大隈(Okuma)機床公司展出“IT plaza”(信息技術廣場,簡稱IT廣場);德國西門子(Siemens)公司展出的Open Manufacturing Environment(開放制造環境,簡稱OME)等,反映了數控機床加工向網絡化方向發展的趨勢。